Formulas

Transformer ratios

ELECTRONICS A-LEVEL - POWER SUPPLY UNIT ASSESSMENT

Answer all questions.

Do not write on this paper. Provide your answers on a blank sheet of lined or plain paper. When producing drawings and diagrams, use a sharp pencil and ruler where appropriate.

Question 1

On the left is an a.c. transformer with a primary and secondary winding. They have a ratio of 30:1. The transformer primary is connected to a 240v a.c. supply whose frequency is 50 Hertz.

Turns ratio 30:1

a)	Calculate the RMS voltage in the secondary winding.	
		[1]

b) Calculate the peak voltage in the secondary winding.

e)

f)

c) Calculate the cycle time of the secondary a.c. voltage

[1]

[1]

d) Copy out the grid below and draw the wave you expect to see on the secondary winding. [2]

A diode is added as shown

- What effect will the diode have on the peak voltage?
 [1]
- Draw on the same grid as d) the wave you would expect to see with the diode added.

Question 2

A supply is connected as shown. It has a secondary voltage rated at 12.5 volts and is smoothed using a 1000μ F capacitor. This can be measured at +V. Connected to the supply is a load of 50 Ω .

With the load connected,

a) calculate	the current flowing through the load resistance.
--------------	--

b) calculate the ripple voltage.

[1]

[1]

[1]

c) How could you reduce the ripple voltage?

Question 3

The load is removed and a 9 volt zener diode regulator is added as shown below.

a) What does the zener diode do?

[1]

b) This supply must be capable of producing a maximum of 20mA at 9v. What value must resistor Rz have?

[1]

c) Calculate the power dissipated in the zener diode when there is no load connected

[1]

d) Redraw the circuit diagram of the supply using an NPN transistor to improve the current capability of the supply.

Question 4

- a) Copy out the graph to the right. Draw out the current-voltage characteristics of a zener diode. [2]
- b) On your diagram, indicate where the breakdown point is.
 [1]
- C) What is meant by 'reverse bias'?

Question 5

Below is a transformer with a bridge rectifier connected. The secondary voltage is 9 volts RMS.

[1]

a)	What is the peak voltage you would expect to see across point A?	[1]
b)	Why are bridge rectifiers a more efficient way of rectifying a.c. waves rather than using just one diode?	
		[1]
c)	Draw the approximate shape of the wave you would expect to see at point A.	
		[1]
d)	What is meant by the term – split power supply?	[4]
		[1]
e)	Draw a circuit diagram of a split power supply. The output must be rectified and smoo	thed. [3]

End of test.