

1

Robotic Hand in Motion Using Arduino-
Controlled Servos

 Nicholas Bonini Nithya Iyer

 nicholas.bonini@gmail.com nithya_a_iyer@yahoo.com

 David Kim Katherine Mathison Lauren Wellons
ycdavidkim@gmail.com kvmathison@gmail.com lewellons@comcast.net

New Jersey Governor’s School of Engineering and Technology 2014

Abstract

 Amputees often suffer from
psychological and physical difficulties due
to their inability to use their extremities. To
aid the amputees in acquiring a functional
replacement hand at a feasible cost, a
prototype prosthetic was created utilizing
Flexy Hand, a 3D printable hand model, and
Arduino, an open source microprocessor. To
avoid expensive and frustrating control
methods associated with myoelectric
prosthetics, an Android smartphone
application allows the user to select a
gesture that he wishes the hand to perform.
The phone sends this information to the
Arduino, which powers certain servos to
actuate each finger individually. The simple
construction and low cost of materials, as
well as the use of common devices such as
smartphones, enables amputees to gain
access to new prosthetics with ease.

1. Introduction

With 3D printed prosthetics gaining
popularity with the advent of consumer level
3D printers, practical applications of these
prosthetics have also been increasing.
Online open source development has
allowed for printable hand models to be
downloaded for free within minutes from

websites such as Thingiverse, a free, open
source 3D modeling site.

Contrary to traditional prosthetics,
which often cost tens of thousands of
dollars1 and are usually unaffordable to
many, these alternatives provide a relatively
inexpensive option to the public. This allows
for less expensive, yet effective prosthetics
to be available to modern consumers, with
increased personalization for the user at a
speed unachievable by conventional
methods.

Besides cost, another prevalent issue
in high-level prosthetics is ease of control.
The most common control system in use is
electromyography, a medical technique in
which electrical signals from the remaining
muscles in an amputee’s forearm are read by
a device2 attached to the muscle and are
mimicked by the prosthetic. While people
without any functional forearm muscles, and
even those with intact forearm muscles can
use this approach, electromyography can be
difficult to use and is often imprecise3.
Therefore, developing a 3D printable hand
that is easy to assemble and control in a non-
professional setting with commonplace
products such as smartphones is vital for the
average amputee. Smartphone based
controls are more portable and convenient

2

than traditional myoelectric or motion
sensing control systems.

Furthermore, the functionality and
performance of consumer level robotic
hands have advanced significantly in the
past several years. Developments in the 3D
printing industry have led to numerous
designs of modeled hands from users all
around the world, which the public can
access online. 3D printed prosthetics are
further advantageous in that they are ideal
for children and teenagers; when one hand
becomes too small, another can be readily
printed in a larger size and reintegrated into
the control system4.

2. Background
2.1 3D Printing

Makerbot Replicator utilizes a
technology called Fused Deposition
Modeling (FDM), which involves the
construction of parts in layers using high-
grade thermoplastics5. To print a 3D model,
an STL file of the design must be exported
into the printer software. The Makerbot then
creates g-codes that determine a pathway for
the extruder. The extruder is the mobile head
of the printer that first melts the filament and
then deposits the molten thermoplastic into
thin layers until the model is fully printed.
As needed, the 3D printer will provide
scaffolds for the design that act as supports.
These are easily removed at the end6.

Figure 1: Makerbot Replicator 3D Printer

The most commonly used filaments
in consumer printing are acrylonitrile
butadiene styrene (ABS) and polylactic acid
(PLA) thermoplastics. Each filament has its
own unique characteristics, lending to
different usages. While ABS is tougher and
more flexible than PLA, due to the nature of
the plastic, ABS requires a heated bed to
prevent the outer layers from curling in or
warping; this guarantees an even distribution
of heat to both the outer and inner layers.
PLA, however, does not require a heated
bed and is more resistant to substances such
as acetone, which dissolves ABS filament.

2.2 Arduino

Arduino is a brand of open-source
microcontrollers frequently used in at-home,
do-it-yourself electronics projects7. It can
be programmed in a version of C, and the
Arduino website contains software for
programming the device. There are also a
host of straightforward online tutorials that
make it easy and quick to learn. A variety of
electronic components can be connected via
breadboard as inputs and outputs for the
code, making Arduinos incredibly
versatile. Arduino microcontrollers are
intuitive, inexpensive8, and readily
available—three factors critical to
accessible, easy-to-use prosthetics.

2.3 Servos

Servos are small but powerful
motors that can be used in a multitude of
products ranging from toy helicopters to
robots. A servo consists of three basic parts:
an electric motor, a feedback potentiometer
that connects to the output shaft, and a
controller. This allows the servo to rotate to
specific angles by keeping track of its
current angular position. The servo is
controlled via Pulse-Width Modulation, or
PWM. The motor aligns the shaft to a
specific angle depending on the duty cycle
of the signal that is sent. The ability to

3

rotate to a certain position rather than at a
certain speed makes servos very useful in
prosthetic devices by making very precise
movements through the elimination of the
time variable. Normal DC motors require
running the motor for a given amount of
time at a certain speed to derive a distance;
servos can directly choose a position9.

2.4 Bluetooth

Using low-power radio waves,
Bluetooth can connect up to eight devices
simultaneously10. Due to its strong
connectivity, this technology is preferred
over other wireless communication
techniques such as infrared networks. To
achieve this, Bluetooth devices send out
very weak signals, preventing interference
with other systems. Although this limits the
range to about 10 meters, it provides enough
range for a keyboard, computer, mouse, or
desktop printer. Furthermore, weak
transmissions reduce power consumption
and do not require a direct line of sight
between the connected devices, allowing the
user to be in a separate room from the
second device while still maintaining full
functionality11.

2.5 Android Application

MIT App Inventor 2 is the most ideal
platform for developing an app to control
the hand. This platform is free to use and
simple to learn, even for those with very
little experience in programming. MIT App
Inventor 2 is in the style of a blocks editor:
rather than writing lines of code in the
traditional manner, the designer drags and
drops blocks to represent functions and
variables. Every segment of code begins
with a condition given by a “when” block,
and continues with “get” blocks, or “set”
blocks—what the application will do when
the “when” condition is met. Each “when”,
“get”, and “set” block is specific to each
component; for example, a button has “when

Button1.Click”, a “when” condition that is
true when the button is clicked12. The full
block code can be viewed in Appendix B.

2.6 Myoelectric Prosthetics

Myoelectric prosthetics generally
weigh anywhere from 400 to 600 grams, can
use a combination of DC motors and servos,
and have around 11 joints and 6 degrees of
freedom. On the contrary, the human hand
has an average weight of 400 g, taking up
0.6 percent of the total body weight, and has
27 degrees of freedom in terms of finger
functionality13. In 2007, results of a survey
taken by myoelectric prosthetic users
showed that many consumers wanted better
movement of the thumb, index finger, and
wrist. Although they use one of the most
advanced control methods on the market,
new myoelectric devices are not responding
to users’ complications with finger
functionality by only having 6 degrees of
freedom14.

3. Methods/Experimental Design
3.1 Hand Assembly
 The hand used in the prototype was a
3D printed version of the Flexy Hand15. The
STL file was exported into the Makerbot
platform and directly printed without any
scaling or modification. Taking into account
the separate parts of the hand, printing took
about eleven hours. The completed hand
was strung with fishing line and a stretched
disposable pipette. The pipette was used to
break up any excess material from the 3D
printing that would hinder the fishing line’s
path through the interior of the hand and
fingers, and to help thread the line through
the palm of the hand. Each finger was strung
with about two feet of fishing line to ensure
that there would be enough material to reach
down the length of the arm and attach to the
servos.

4

 Molds for the hinge joints (see
Figure 2) were downloaded from Github16
and 3D printed.

Figure 2: 3D Model of Joint Mold

Various types of silicone were molded into
joints and placed in the joint slots in each
finger to test their properties. GETM
Supreme Silicone was selected to be the
main material for joint casting. Using a
caulk gun and the 3D printed molds, the
silicone was shaped into connectors that
cured in about 24 hours. These were then fit
into slots between each finger segment.

3.2 Arm Assembly

A PVC pipe with an inner diameter
of one and a half inches and a length of
twelve inches was used to house the servo
motors. Rectangular holes three fourths of
an inch wide by one and one half inches
long were cut into the PVC in a staggered
pattern down the tube, as shown in Figure 3.
The holes were spaced a quarter of an inch
apart. Five ⅛ inch round holes were drilled
into the pipe at one end, one for each
finger’s control string to enter the pipe and
meet the hand at its center.

A plastic ring was 3D printed and
attached to the end of the pipe with
superglue in between the 1/8 inch holes and
the servos. The servo motors were placed in
their housing and superglued into place. The
fishing lines were run from the fingers
through the interior of the PVC tube, out the
holes drilled into the tube, through the 3D
printed ring, and to the servos. They were
tied to the prongs on the servos that were
pointed directly toward the hand when in the

zero position. Eyeglass screws were inserted
into the two prongs of each servo to the right
of the prong with the fishing line.

Figure 3: PVC pipe with a staggered spiral motion

Holes were drilled into the hand and

the sides of the PVC tube. L-brackets were
fastened between the hand and the inner
pipe by driving screws into these holes and
reinforcing the connection with superglue.
This holds the hand to the inner tube.

3.3 Circuitry
 Each servo has three wires: a power
wire, a ground wire, and a Pulse-Width
Modulation (PWM) wire. The PWM wire
enters one of the six PWM ports on the
Arduino Uno board. The power and ground
of each servo were attached to the horizontal
positive and negative rows on the
breadboard, which were connected to the 6V
battery pack. The battery pack housed four
1.5V D size batteries. The Bluetooth
module’s four pins were plugged into
adjacent columns on the breadboard. The
power and ground pins connected to their

5

own power and ground ports in the Arduino.
The other two pins are RXD and TXD, and
connected to the TX and RX ports on the
Arduino, respectively. These pins told the
Arduino what commands the phone was
sending (see Figure 4).

Figure 4: Arduino Servo Circuit Schematic

3.4 Arduino Programming
 The Arduino was programmed using
the development environment available on
the Arduino website. The most important
aspect of this project’s code was setting the
position of the servos , which determined the
fingers’ movement. The servo library,
which contained functions for attaching the
servos to pins and setting their angles,
established fine control over the servo
positioning. The attach() function
associated a certain pin on the Arduino with
each servo, and the write() function set the
angular position of the servo to a value
between 0 and 180 degrees. The position of
the servo determined how far the finger that
it controls would bend, with a lower angle
leaving the finger more relaxed and a higher
angle bending the finger in toward the palm
of the hand. Gestures were made by setting
each servo to a specific angle that
corresponded to how far the finger was bent

when the hand made this gesture. Initially, a
potentiometer was used to manually control
the position of the fingers, and when each
gesture was made, the angles of the servos
were recorded and later configured as preset
gestures. In the final design, gestures were
controlled via an Android application
connected by Bluetooth to the Arduino
board. When a gesture to be performed was
selected in the application, the Arduino
received an integer between zero and five
and used this data to select which gesture
function to run. The functions set the
servos’ positions to match the data gathered
for the selected gesture in the manual
tests. The full programmed code can be
viewed in Appendix A.

3.5 Application Development
 The application for this hand was a
button-based application with only one
screen (see Figure 5). When a button was
pressed for a gesture, one byte number was
sent to the Bluetooth module. The Arduino
used this byte as a trigger to run the block of
code that executes that gesture, setting the
servo motors for the corresponding fingers
to specific angles. When any button that
results in a gesture was selected, the other
gesture buttons became hidden until the
reset button was pressed. Once the hand
reverted to its initial position, the other
buttons became available again.

Figure 5: Menu interface on the Samsung Nexus S

6

 To connect to Bluetooth, a list picker
function was created as a “connect to
Bluetooth” button. When this button is
pressed, a list of devices that have been
paired with the phone materializes. When
the HC-06 Bluetooth module is selected, the
Android phone establishes a connection and
a green label appears that reads,
“Connected!” This means that the device is
ready to receive orders from the phone. If
the Android phone cannot connect to the
Bluetooth device, the label appears red and
reads, “Not connected…” The application
automatically checks the phone for
connectivity every 50 milliseconds and
updates the label to the current status of the
Bluetooth connection.
 The Samsung Nexus S was selected
as the smartphone to be used with the
prototype. To test the application, Android
drivers were installed to download the apk
file to the phone. Once the drivers were
installed, the Android had to be opened as a
USB storage device. The application was
placed into the phone’s folder, which
appeared when USB storage mode was
activated. The file appeared in the
application folder “ES File Explorer” on the
phone’s display, where it could be selected
for installation. Once the application was
installed and the phone connected to the
Bluetooth module, the flashing red light on
the module would stop blinking and stay lit.
Once the Bluetooth was connected, each
servo was hooked up to the breadboard one
at a time and tested with the app.
 The second component of testing
involved the application’s performance to
button response. First we tested how the
menus would navigate; each gesture button
was pressed in turn and the result was
assessed. Asking random people to compare
different color schemes and button layouts
simulated user perception of the application.

4. Results and Discussion
4.1 Hand Functionality

The fully assembled hand can easily
perform the everyday gestures of rock,
paper, scissors, the “OK” sign, and thumbs
up at the push of a button. The user interface
is simple to use and easy to learn. The
application allows the user to control five
different gestures via Bluetooth from an
android smartphone. The fingers can be
configured to a variety of gestures due to the
strings that are manipulated by the servos.
Also, rubber bands superglued to the back of
the fingers allow them to snap back into
place when the servos release the pressure
(see Figure 6).

Figure 6: Hand with rubber bands attached

This entire project can be easily built

with commonly available materials at a low
cost of $475, and can be programmed using
the open source Arduino with minimal
experience in programming. A smartphone
application for controlling the hand can be
designed by following the tutorials on the
MIT App Inventor website. Although the
device is simple and affordable, it cannot
grab things very easily or respond to stimuli,
and it is heavy and bulky. Therefore our
device is easily reproducible but not robust.

7

4.2 Discussion
New technological advancements in the

field of myoelectric prosthetics have led to
development of hands with multiple degrees
of freedom. Nonetheless, these devices are
still inadequate in terms of performance,
stability, aesthetics, and affordability.
Anthropomorphic hands such as iLimbTM
and BebionicTM have received media
attention—yet, they are not as consumer
friendly as advertised.

The use of servos, rather than DC
motors, in this new prototype proves to be a
more viable option when controlling finger
kinematics. Servos are lighter than DC
motors and are more precise. Due to their
simple, continuous rotation mechanisms, DC
motors are more commonly used in
prosthetics, even though servos demonstrate
a higher degree of accuracy through proper
control of angular displacement. Servos are
also much easier to program than DC
motors; a DC motor’s control is dependent
on the time the action will take to complete,
rather than the motor’s final position. With
the use of servos, the time variable is
eliminated along with any other factors for
possible error.

Moreover, most myoelectric prosthetics
possess six degrees of freedom in finger
movement as opposed to only five in this
particular prototype. To negate this
disadvantage, different hand designs can be
3D printed to achieve this sixth degree, the
Trapeziometacarpal joint. Because of time
constraints, this joint was not added to the
prototype due to the added complexity in the
programming and assembly of the hand. As
a result, the fingers cannot move in a lateral
direction, lessening the number of degrees
of freedom the prototype has overall. This
joint does play an imperative role in the
functioning of a normal thumb, so
alternative designs can be found to ensure
the thumb will be fully utilized. The
dexterity of the average human hand is far

more intricate with 27 degrees of freedom.
This new prototype and even the
myoelectric devices are not advanced
enough to reach that level, but with new
developments in the future, prosthetics could
eventually replace the lost limb or hand
entirely.

4.3 Problems Encountered

Although this project met most of its
initial goals, there were several setbacks in
the process, which hindered overall
productivity. Small errors during hand
printing were compounded by stress from
us, causing cracks to appear in the
palm. Acetone was used to soften excess
ABS filament so that the filament could be
placed inside the cracks for restoration.

In the initial tests, the fishing line would
pass under the servo arms and through the
diameter of the rotation. To achieve
maximum distance with every rotation, the
eyeglass screws were put into the holes in
the servo blades. This kept the lines within
the circumference of the arms, which is
longer than the diameter and could pull the
fingers further. Then, the fishing line would
often wrap underneath the screws in the
servo instead of around them so that the line
was not pulled the full length, preventing the
hand from fully closing. To resolve this, a
plastic ring was added to the internal pipe in
the arm. The fishing line was threaded
through holes in the ring at the same height
as the screws.
 Another issue involved the inability of
the hand to return to its initial resting
position. To correct for this flaw, rubber
bands were attached to the back of the
fingers. The first set of rubber bands was too
inelastic and prevented the servos from
pulling the fingers in toward the palm.
However, when the rubber bands were
replaced with longer, thinner elastic bands,
the servos had enough power to move the
fingers once more. This problem would not

8

have arisen had the hinge joints been printed
with strong, flexible nylon. The process for
molding and curing silicone joints could
have been completely avoided.
 Arm assembly also provided challenges:
the original outer casing of the arm was just
big enough to fit the servos and allow them
to function properly (see Figure 7). Carving
holes for the servos in the outer pipe
alleviated any casing issues.

Figure 7: Full Hand and Arm Assembly

 One problem encountered during app
development was that the Bluetooth device
would become disconnected, but the
connectivity light would stay green. To
remedy this, a clock timer was added to
update the connectivity light’s status every
50 milliseconds. The reason the app makes
the user reset the hand before beginning
another gesture is to prevent confusion. If
more than one gesture button is pressed, the
servos may receive more than one piece of
information, ultimately causing them to fail.
 Unfortunately, a system for turning the
wrist using a DC motor and sprockets was in
the initial stages of design, but could not be
implemented as a part of the arm due to time
constraints.

5. Conclusion
Simple prosthetics have the potential

to make a measurable impact in an
amputee’s daily life. Since this particular
prosthetic is controlled by an Android
application, its use is straightforward and
does not carry a steep learning curve, unlike
many of the more advanced prosthetics
which require an inordinate amount of time
to master. Construction and assembly of the
hand calls for a short list of materials and
tools that are easy to access. With the
availability of this technology, amputees
have the necessary tools to manufacture
their own personalized prosthetics that will
improve their quality of life in addition to
the prevention of the mental degradation that
oftentimes comes with physical
deformation17.

The objective of this project
consisted of the creation of an inexpensive
3D-printed robotic prosthetic hand powered
by Arduino that could perform several
gestures. The proof-of-concept prototype
accomplishes these tasks effectively with an
easy method of control. Several
enhancements to the design would boost
functionality to the hand. Wrist actuation of
the hand would prevent the amputee from
having to turn his shoulder to properly grasp
something; instead, the app would turn the
hand to the desired setting. Further upgrades
would include more gestures and tactile
feedback. A bank of specialized gestures
could be programmed into the app, offering
the user more flexibility with his fingers.
Tactile feedback, on the other hand, would
alert the amputee to the temperature and
texture of objects, establishing a natural
perception of touch. These ameliorations
would serve to create a product that could
revolutionize the prosthetics industry.

9

6. Acknowledgments
The authors would like to

acknowledge our project mentors, Mohit
Chaudhary, Dr. Kang Li, and Dr. William
Craelius for all of their help and guidance in
planning and building our project, and our
assistant project mentor, Julian Hsu, for his
assistance in designing the Android app. We
would also like to thank our RTA, Mary Pat
Reiter, for her assistance with this paper,
Director Dean Jean Patrick Antoine, and all
our GSET sponsors for their support:
Rutgers University; The State of New
Jersey; Morgan Stanley; Lockheed Martin;
Silverline Windows; South Jersey
Industries, Inc.; The Provident Bank
Foundation; and Novo Nordisk. We would
also like to thank Steve Wood for his 3D
model of the Flexy Hand. Without the
generous help and donation of these people
and companies, our project would not have
been possible. Our team expresses much
gratitude to everyone who contributed to this
project.

7. Notes:
1W. Craelius, K. Li, I. Ali, A. Alvi, E. Chu,
K. Lin, S. Nazare, N. Plichta, “Transhumeral
Prosthesis with a Dexterous Hand,” pp. 1-3,
(unpublished).

2”Myoelectric Prosthetics 101,” Ottobock,
<http://www.ottobockus.com/prosthetics/inf
o-for-new-amputees/prosthetics-
101/myoelectric-prosthetics-101/> (19 July
2014).

3Joseph T. Belter, Jacob L. Segil, Aaron M.
Dollar, Richard F. Weir, “Mechanical design
and performance specifications of
anthropomorphic prosthetic hands: A
review”, JRRD, 50, p. 611, 2013.

4“John Hopkins and e-NABLE,” Enabling
the Future, 17 July 2014,

<http://enablingthefuture.org/tag/3d-printed-
hands> (19 July 2014).

5”FDM Thermoplastics,” Stratasys,
<http://www.stratasys.com/materials/fdm>
(19 July 2014).

6Annelise, MakerBotting 101 - How Does It
Work, MakerBot, January 10, 2012,
<http://www.makerbot.com/blog/2012/01/1
0/makerbotting-101-how-does-it-work/> (23
July 2014)

7”Frequently Asked Questions,” Arduino,
<http://arduino.cc/en/Main/FAQ> (19 July
2014).

8”Arduino Uno-R3,” Sparkfun,
<https://www.sparkfun.com/products/11021
> (19 July 2014).
9”What’s A Servo?,” Seattle Robotics
Society,
<http://www.seattlerobotics.org/guide/servo
s.html> (19 July 2014).

10How It Works,” Bluetooth,
<http://www.bluetooth.com/Pages/How-It-
Works.aspx> (19 July 2014).
11“How Bluetooth cuts the cord,”
TechTarget, March 2005,
<http://searchmobilecomputing.techtarget.co
m/feature/How-Bluetooth-cuts-the-cord>
(19 July 2014).

12”MIT App Inventor,”
<http://appinventor.mit.edu/explore/> (19
July 2014).

13Pylatiuk C., Schulz S., Döderlein L.,
“Results of an Internet survey of myoelectric
prosthetic hand users”, PubMed, Dec. 2007,
<http://www.ncbi.nlm.nih.gov/pubmed/1805
0007> (19 July 2014).

10

14”Flexy Hand,” Thingiverse,
<http://www.thingiverse.com/thing:242639>
(19 July 2014).

15”Flexy-Joint,” GitHub,
<https://github.com/daprice/Flexy-
Joint/wiki/Casting> (19 July 2014).

16”Coping with Your Amputation,” Capital
Health,

<http://www.cdha.nshealth.ca/amputee-
rehabilitation-musculoskeletal-
program/patients-families-amputee-
rehabilitation/coping-your-> (19 July 2014)

17Joseph T. Belter, Jacob L. Segil, Aaron M.
Dollar, Richard F. Weir, “Mechanical design
and performance specifications of
anthropomorphic prosthetic hands: A
review”, JRRD, 50, pp. 599-606, 611, 2013.

1

8. Appendix
8.1 Appendix A: Arduino Code

#include <Servo.h> //Import servo
library

Servo thumb; //Initialize
finger servos
Servo index;
Servo middle;
Servo ring;
Servo pinky;

byte serialA; //Input from
app

void reset() { //Resets
fingers to a natural
 thumb.write(30); //relaxed
position
 index.write(30);
 middle.write(30);
 ring.write(30);
 pinky.write(30);
}

void setup() {
 thumb.attach(3); //Sets each
servo to a pin
 index.attach(5);
 middle.attach(6);
 ring.attach(9);
 pinky.attach(10);

 reset();
 Serial.begin(9600); //Can receive
input via BT
}

/*void jelly() {
 //Jellyfish hand
 for(int i=0;i<180;i++) {
 thumb.write(i);
 index.write(i);
 middle.write(i);
 ring.write(i);

pinky.write(i);
 delay(8);
 }
 for(int i=180;i>0;i--) {
 thumb.write(i);
 index.write(i);
 middle.write(i);
 ring.write(i);
 pinky.write(i);
 delay(8);
 }
}*/

void rock(){ //RPS rock
 thumb.write(180);
 index.write(180);
 middle.write(180);
 ring.write(180);
 pinky.write(180);
}

void paper() { //RPS paper
 thumb.write(0);
 index.write(0);
 middle.write(0);
 ring.write(0);
 pinky.write(0);
}

void scissors(){ //RPS scissors
 thumb.write(180);
 index.write(0);
 middle.write(0);
 ring.write(180);
 pinky.write(180);
}

void thumbsUp() { //Thumbs up
gesture
 thumb.write(0);
 index.write(180);
 middle.write(180);
 ring.write(180);
 pinky.write(180);
}

2

void okay() { //Okay sign
 thumb.write(60);
 index.write(150);
 middle.write(0);
 ring.write(0);
 pinky.write(0);
}

void loop() {
 if (Serial.available() > 0) { //Read value
from app via BT
 serialA = Serial.read();
 Serial.println(serialA);
 }
 switch(serialA) { //Input
determines gesture
 case 0:
 reset();

 break;
 case 1:
 rock();
 break;
 case 2:
 paper();
 break;
 case 3:
 scissors();
 break;
 case 4:
 thumbsUp();
 break;
 case 5:
 okay();
 break;
 }
}

8.2 Appendix B: MIT App Inventor Code

2

