PRIMA PARTE

-QUESITO 3

SOLUZIONE A

$$\begin{split} P_{torr} &= V_{torr} \cdot I \cdot cos\varphi = 12kW \\ I &= \frac{P_{torr}}{V_{torr} \cdot cos\varphi} = \frac{12k}{230 \cdot 0.95} = 54.9A \end{split}$$

Da tabelle: 10mm²

SOLUZIONE B

LE Norma CEI 64.8 (art. 525) consiglia che la caduta, tra l'origine dell'impianto stesso e qualunque punto di alimentazione di un utilizzatore, sia inferiore al 4% del valore della tensione nominale dell'impianto

$$\frac{\Delta V_l}{V_{co}} < 0.04$$

Quindi la massima caduta di tensione lungo la linea deve essere

$$\Delta V_l < 0.04V_n = 0.04 \cdot 230 = 9.2V$$

Nel caso peggiore, alle torrette arrivano:

$$V_{torr} > 230 - 9.2 = 220.8V$$

Nota la potenza richiesta dalle torrette

$$P_{torr} = V_{torr} \cdot I \cdot cos\varphi = 12kW$$

Si calcola la corrente massima necessaria ricordano che secondo la delibera AEEG 654/2015 $cos \varphi >$ 0,95

$$I < \frac{P_{torr}}{V_{torr} \cdot cos\varphi} = \frac{12k}{220.8 \cdot 0.95} = 57.2A$$

La resistenza della soddisfa alle seguenti 2 relazioni

$$\begin{cases} R = \frac{\Delta V_l}{I} \\ R = \rho_{Cu} \frac{2L}{S} \Rightarrow \frac{\Delta V_l}{I} = \rho_{Cu} \frac{2L}{S} \Rightarrow S = \rho_{Cu} \frac{2L \cdot I}{\Delta V_l} \end{cases}$$

La resistività del rame vale

$$\rho_{\text{Cu}} = 0.017 \frac{\Omega \cdot \text{mm}^2}{\text{m}}$$

La sezione minima risulta

$$S > \rho_{Cu} \frac{2L \cdot I}{\Delta V_I} = 0.017 \frac{200 \cdot 57,2}{9,2} = 21,13 mm^2$$

SOLUZIONE C

 $\Delta V = 2(RI\cos\varphi + XI\sin\varphi)$

Sezione del cavo [mm²]	Tipologia di cavo	Resistenza R ad 80° C	Reattanza [mΩ/m]	Materiale	Temperatura [°C]
1	unipolare	22,1	0,176	Rame	80
1.5	unipolare	14,8	0,168	Rame	80
2.5	unipolare	8,91	0,155	Rame	80
4	unipolare	5,57	0,143	Rame	80
6	unipolare	3,71	0,135	Rame	80
10	unipolare	2,24	0,119	Rame	80
16	unipolare	1,41	0,112	Rame	80
25	unipolare	0,889	0,106	Rame	80

X è circa 1/10 di R, inoltre se $\cos\varphi=0.95 \Rightarrow \varphi=\arccos0.95 \cong 18.2^{\circ} \Rightarrow \sin 18.2^{\circ} \cong 0.31$ quindi $X \sec \varphi=0.10.3 R\cos \varphi=0.03 \cdot R\cos \varphi$

in prima approssimazione si può trascurare il termine XI sen φ

$$\begin{cases} \Delta V = RI\cos\varphi \\ R = \rho_{Cu}\frac{L}{S} & \to \Delta V = \rho_{Cu}\frac{\widetilde{L}}{S}I\cos\varphi \end{cases}$$

$$I = \frac{P}{V\cos\varphi} = \frac{12k}{230 \cdot 0.95} = 54.95A$$

$$\Delta V = 0.04 \cdot 230 = 9.2V$$

$$S = \rho_{Cu}\frac{\widetilde{L}}{\Delta V}I\cos\varphi = 0.0176\frac{200}{9.2}54.95 \cdot 0.95 = 19.97mm^2 \to 25mm^2$$

SECONDA PARTE

- QUESITO 3

$$R(t) = e^{-\lambda t}$$

Per isolare il tempo si applica il logaritmo naturale ad entrambi i membri:

$$\ln(R(t)) = \ln(e^{-\lambda t}) = -\lambda t \quad \Rightarrow \quad t = -\frac{\ln(R(t))}{\lambda}$$

$$t_A = t_C = -\frac{\ln(0,9)}{\lambda_A} = -\frac{\ln(0,9)}{0,0002} = 526,8h$$
$$t_B = -\frac{\ln(0,9)}{\lambda_B} = -\frac{\ln(0,9)}{0,0001} = 1053,6h$$

Per 2 blocchi in parallelo l'affidabilità si calcola dalla:

$$R_p(t) = 1 - [(1 - R_A(t))(1 - R_B(t))(1 - R_C(t))]$$

$$R_p(t) = 1 - \left[\left(1 - e^{-\lambda_A t} \right) \left(1 - e^{-\lambda_B t} \right) \left(1 - e^{-\lambda_C t} \right) \right] = 1 - \left[(1 - e^{-0,0002 \cdot t})^2 \left(1 - e^{-e^{-0,0001 \cdot t}} \right) \right]$$

L'affidabilità a 500 ore risulta

$$R_p(500) = 1 - \left[(1 - e^{-0,0002 \cdot 500})^2 \left(1 - e^{-e^{-0,0001 \cdot 500}} \right) \right] \cong 0,9996$$